# The $d$-Weddle locus for a finite set of points in projective space 

Seminarium z geometrii algebraicznej i algebry przemiennej Justyna Szpond

Kraków, $8^{\text {th }}$ November, 2022

## Motivation

## Definition

A finite set $Z \subset \mathbb{P}^{3}$ of points whose projection to $\mathbb{P}^{2}$ from a general point is a complete intersection of a curve of degree $a$ with a curve of degree $b \geqslant a$ is called ( $a, b$ )-geproci.

## Motivation

## Definition

A finite set $Z \subset \mathbb{P}^{3}$ of points whose projection to $\mathbb{P}^{2}$ from a general point is a complete intersection of a curve of degree $a$ with a curve of degree $b \geqslant a$ is called ( $a, b$ )-geproci.

## Remark

For such $Z$ there are cones (with vertex in a general point) of degree a and $b$ containing $Z$.

## Motivation

## Definition

A finite set $Z \subset \mathbb{P}^{3}$ of points whose projection to $\mathbb{P}^{2}$ from a general point is a complete intersection of a curve of degree $a$ with a curve of degree $b \geqslant a$ is called ( $a, b$ )-geproci.

## Remark

For such $Z$ there are cones (with vertex in a general point) of degree a and $b$ containing $Z$.

## Problem

Study locus of points occuring as a vertex of degree d cone containing $Z$.

## Classical example

[W] T. Weddle, On the theorems in space analogous to those of Pascal and Brianchon in a plane. Part II, Cambridge and Dublin Mathematical Journal, 5 (1850), pp. 58-69.

## Example

Let $Z$ be a set of 6 points in $\mathbb{P}^{3}$ in Linear General Position and let $d=2$. Then the vertex locus is a surface, now known as classical Weddle surface.

## Classical example

[W] T. Weddle, On the theorems in space analogous to those of Pascal and Brianchon in a plane. Part II, Cambridge and Dublin Mathematical Journal, 5 (1850), pp. 58-69.

## Example

Let $Z$ be a set of 6 points in $\mathbb{P}^{3}$ in Linear General Position and let $d=2$. Then the vertex locus is a surface, now known as classical Weddle surface.
[E] A. Emch, On the Weddle surface and analogous loci, Transactions of the American Mathematical Society, 27 (1925), pp. 270-278.

For larger $d$ and $Z \subset \mathbb{P}^{3}$ of other cardinality.

Let $Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}$ let $P \notin Z$ be a point and let $d$ be a positive number. Let

$$
\begin{gathered}
I=I(Z) \cap I(P)^{d} \subset R=\mathbb{C}\left[\mathbb{P}^{n}\right]=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right], \\
\delta(Z, P, d, t)=\operatorname{dim}_{\mathbb{C}}[I]_{t} .
\end{gathered}
$$

For $Z, t$ and $d$ we define

$$
\delta(Z, d, t)=\min _{P} \delta(Z, P, d, t)
$$

The $d$-Weddle locus

Let $Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}$ let $P \notin Z$ be a point and let $d$ be a positive number. Let

$$
\begin{gathered}
I=I(Z) \cap I(P)^{d} \subset R=\mathbb{C}\left[\mathbb{P}^{n}\right]=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right], \\
\delta(Z, P, d, t)=\operatorname{dim}_{\mathbb{C}}[I]_{t} .
\end{gathered}
$$

For $Z, t$ and $d$ we define

$$
\delta(Z, d, t)=\min _{P} \delta(Z, P, d, t) .
$$

## Definition

The $d$-Weddle locus of $Z$ is the closure of the set of points $P \in \mathbb{P}^{n} \backslash Z$ (if any) for which $\delta(Z, P, d, d)>\delta(Z, d, d)$.

## Example

Let $Z \subset \mathbb{P}^{3}$ be a set of 6 points in LGP. Then the 2 -Weddle locus is the classical Weddle surface, i.e., the closure of the locus of points $P \notin Z$ in $\mathbb{P}^{3}$ that are the vertices of quadric cones in $\mathbb{P}^{3}$ containing $Z$.

## Example

Let $Z \subset \mathbb{P}^{3}$ be a set of 6 points in LGP. Then the 2 -Weddle locus is the classical Weddle surface, i.e., the closure of the locus of points $P \notin Z$ in $\mathbb{P}^{3}$ that are the vertices of quadric cones in $\mathbb{P}^{3}$ containing $Z$. Equivalently, the classical Weddle surface is the closure of the locus of points $P \notin Z$ from which $Z$ projects to a set $Z_{P} \subset \mathbb{P}^{2}$ contained in a conic.

## The classical Weddle surface

## Example

Let $Z \subset \mathbb{P}^{3}$ be a set of 6 points in LGP. Then the 2 -Weddle locus is the classical Weddle surface, i.e., the closure of the locus of points $P \notin Z$ in $\mathbb{P}^{3}$ that are the vertices of quadric cones in $\mathbb{P}^{3}$ containing $Z$. Equivalently, the classical Weddle surface is the closure of the locus of points $P \notin Z$ from which $Z$ projects to a set $Z_{P} \subset \mathbb{P}^{2}$ contained in a conic.
The general projection does not have this property and indeed for a point $P$ of the classical Weddle surface we have

$$
\operatorname{dim}\left[I\left(Z_{P}\right)\right]_{2}=1>0=\delta(Z, Q, 2,2)
$$

where $Q$ is general.

## Two approaches to finding the $d$-Weddle scheme

## Interpolation matrix

$Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}-$ finite set of distinct points, $s_{1}, \ldots, s_{r}$ - positive integers,

## Interpolation matrix

$Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}-$ finite set of distinct points,
$s_{1}, \ldots, s_{r}$ - positive integers,
$I=I\left(P_{1}\right)^{s_{1}} \cap \cdots \cap I\left(P_{r}\right)^{s_{r}}$ - the graded ideal generated by all forms that vanish to order at least $s_{i}$ at each point $P_{i}$,

## Interpolation matrix

$Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}-$ finite set of distinct points,
$s_{1}, \ldots, s_{r}$ - positive integers,
$I=I\left(P_{1}\right)^{s_{1}} \cap \cdots \cap I\left(P_{r}\right)^{s_{r}}$ - the graded ideal generated by all forms that vanish to order at least $s_{i}$ at each point $P_{i}$,
The ideal $I$ is saturated and defines a subscheme $X=s_{1} P_{1}+\cdots+s_{r} P_{r}$.

## Interpolation matrix

$Z=\left\{P_{1}, \ldots, P_{r}\right\} \subset \mathbb{P}^{n}-$ finite set of distinct points, $s_{1}, \ldots, s_{r}$ - positive integers,
$I=I\left(P_{1}\right)^{s_{1}} \cap \cdots \cap I\left(P_{r}\right)^{s_{r}}$ - the graded ideal generated by all forms that vanish to order at least $s_{i}$ at each point $P_{i}$,
The ideal $I$ is saturated and defines a subscheme $X=s_{1} P_{1}+\cdots+s_{r} P_{r}$. $[I]_{t}$ is given for each degree $t$ by the kernel of a matrix

$$
\Lambda(X, t)
$$

with entries in $\mathbb{C}$, known as the interpolation matrix for $X$ in degree $t$.

## Interpolation matrix

- $X=P_{1}$
$M_{1}, \ldots, M_{N}$ - monomials of degree $t\left(N=\binom{n+t}{n}\right)$


## Interpolation matrix

- $X=P_{1}$
$M_{1}, \ldots, M_{N}$ - monomials of degree $t\left(N=\binom{n+t}{n}\right)$

$$
\Lambda\left(P_{1}, t\right)=\left(M_{1}\left(P_{1}\right), \ldots, M_{N}\left(P_{1}\right)\right)
$$

## Interpolation matrix

- $X=P_{1}$
$M_{1}, \ldots, M_{N}$ - monomials of degree $t\left(N=\binom{n+t}{n}\right)$

$$
\Lambda\left(P_{1}, t\right)=\left(M_{1}\left(P_{1}\right), \ldots, M_{N}\left(P_{1}\right)\right)
$$

- $X=2 P_{1}$
$\Lambda\left(2 P_{1}, t\right)$ is the $(n+1) \times\binom{ n+t}{n}$-matrix whose entries are

$$
\Lambda\left(2 P_{1}, t\right)_{i j}=\frac{\partial M_{j}}{\partial x_{i}}\left(P_{1}\right)
$$

## Interpolation matrix

- $X=P_{1}$
$M_{1}, \ldots, M_{N}$ - monomials of degree $t\left(N=\binom{n+t}{n}\right)$

$$
\Lambda\left(P_{1}, t\right)=\left(M_{1}\left(P_{1}\right), \ldots, M_{N}\left(P_{1}\right)\right)
$$

- $X=2 P_{1}$
$\Lambda\left(2 P_{1}, t\right)$ is the $(n+1) \times\binom{ n+t}{n}$-matrix whose entries are

$$
\Lambda\left(2 P_{1}, t\right)_{i j}=\frac{\partial M_{j}}{\partial x_{i}}\left(P_{1}\right)
$$

- $X=(k+1) P_{1}$
$\Lambda\left((k+1) P_{1}, t\right)$ is the $\binom{n+k}{n} \times\binom{ n+t}{n}$-matrix whose entries are

$$
\Lambda\left((k+1) P_{1}, t\right)_{i j}=\frac{\partial M_{j}}{\partial m_{i}}\left(P_{1}\right)=\partial_{m_{i}} M_{j}\left(P_{1}\right),
$$

where $m_{i}$ 's are monomials of degree $k$ and

$$
\text { for } m=x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} \text { denote } \partial_{m}=\frac{\partial^{i_{0}}}{\partial x_{0}^{i_{0}}} \cdots \frac{\partial^{i_{n}}}{\partial x_{n}^{i_{n}}}
$$

## Interpolation matrix

$Z=P_{1}+\cdots+P_{r}$ and we have an additional fat point $d P$ The $\left(r+\binom{n+d-1}{n}\right) \times\binom{ n+d}{n}$-matrix relevant to the $d$-Weddle locus is

$$
\Lambda(Z+d P, d)=\left(\begin{array}{c}
\Lambda\left(P_{1}, d\right) \\
\vdots \\
\Lambda\left(P_{r}, d\right) \\
\Lambda(d P, d)
\end{array}\right)=\binom{\Lambda(Z, d)}{\Lambda(d P, d)}
$$

## Interpolation matrix

$Z=P_{1}+\cdots+P_{r}$ and we have an additional fat point $d P$
The $\left(r+\binom{n+d-1}{n}\right) \times\binom{ n+d}{n}$-matrix relevant to the $d$-Weddle locus is

$$
\Lambda(Z+d P, d)=\left(\begin{array}{c}
\Lambda\left(P_{1}, d\right) \\
\vdots \\
\Lambda\left(P_{r}, d\right) \\
\Lambda(d P, d)
\end{array}\right)=\binom{\Lambda(Z, d)}{\Lambda(d P, d)}
$$

## Remark

The $d$-Weddle locus is the closure of the locus of points $P \notin Z$ such that $\operatorname{rank}(\Lambda(Z+d P, d))<\rho(Z, d, d)$, where $\rho(Z, d, d)$ is the maximal rank of $\Lambda(Z+d P, d)$ and it is achieved when $P$ is general.

## Interpolation matrix

$Z=P_{1}+\cdots+P_{r}$ and we have an additional fat point $d P$
The $\left(r+\binom{n+d-1}{n}\right) \times\binom{ n+d}{n}$-matrix relevant to the $d$-Weddle locus is

$$
\Lambda(Z+d P, d)=\left(\begin{array}{c}
\Lambda\left(P_{1}, d\right) \\
\vdots \\
\Lambda\left(P_{r}, d\right) \\
\Lambda(d P, d)
\end{array}\right)=\binom{\Lambda(Z, d)}{\Lambda(d P, d)}
$$

## Remark

The $d$-Weddle locus is the closure of the locus of points $P \notin Z$ such that $\operatorname{rank}(\Lambda(Z+d P, d))<\rho(Z, d, d)$, where $\rho(Z, d, d)$ is the maximal rank of $\Lambda(Z+d P, d)$ and it is achieved when $P$ is general.

## Definition

This locus is defined by the ideal $I_{\rho(Z, d, d)}(\Lambda(Z+d P, d))$ of $\rho(Z, d, d) \times \rho(Z, d, d)$ minors of $\Lambda(Z+d P, d)$. We call this ideal the $d$-Weddle ideal for $Z$.

## Interpolation matrix

## Definition

Let $Z \subset \mathbb{P}^{n}$ be a finite set of points. The $d$-Weddle scheme for $Z$ is the scheme defined by the saturation of the $d$-Weddle ideal.

## Interpolation matrix

## Definition

Let $Z \subset \mathbb{P}^{n}$ be a finite set of points. The $d$-Weddle scheme for $Z$ is the scheme defined by the saturation of the $d$-Weddle ideal.

Reduction

$$
\Lambda(Z, d) \longrightarrow \Lambda_{Z, d}^{\prime}=\left(\begin{array}{c|c}
i d_{\alpha} & * \\
\hline 0 & 0
\end{array}\right)
$$

## Interpolation matrix

## Definition

Let $Z \subset \mathbb{P}^{n}$ be a finite set of points. The $d$-Weddle scheme for $Z$ is the scheme defined by the saturation of the $d$-Weddle ideal.

Reduction

$$
\Lambda(Z, d) \longrightarrow \Lambda_{Z, d}^{\prime}=\left(\begin{array}{c|c}
i d_{\alpha} & * \\
\hline 0 & 0
\end{array}\right)
$$

$$
\binom{\Lambda_{Z, d}^{\prime}}{\Lambda(d P, d)} \rightarrow\left(\begin{array}{c|c}
i d_{\alpha} & * \\
\hline 0 & 0 \\
\hline 0 & \Lambda_{Z+d P, d}^{\prime}
\end{array}\right) \longrightarrow\left(\begin{array}{c|c}
i d_{\alpha} & 0 \\
\hline 0 & 0 \\
\hline 0 & \Lambda_{Z+d Q, d}^{\prime}
\end{array}\right)
$$

where $\Lambda_{Z+d P, d}^{\prime}$ is a $\binom{n+d-1}{n} \times\left(\binom{n+d}{n}-\alpha\right)$ matrix of linear forms

## Interpolation matrix

## Definition

Let $Z \subset \mathbb{P}^{n}$ be a finite set of points. The $d$-Weddle scheme for $Z$ is the scheme defined by the saturation of the $d$-Weddle ideal.

Reduction

$$
\Lambda(Z, d) \longrightarrow \Lambda_{Z, d}^{\prime}=\left(\begin{array}{c|c}
i d_{\alpha} & * \\
\hline 0 & 0
\end{array}\right)
$$

$$
\binom{\Lambda_{z, d}^{\prime}}{\Lambda(d P, d)} \rightarrow\left(\begin{array}{c|c}
i d_{\alpha} & * \\
\hline 0 & 0 \\
\hline 0 & \Lambda_{z+d P, d}^{\prime}
\end{array}\right) \rightarrow\left(\begin{array}{c|c}
i d_{\alpha} & 0 \\
\hline 0 & 0 \\
\hline 0 & \Lambda_{z+d Q, d}^{\prime}
\end{array}\right)
$$

where $\Lambda_{Z+d P, d}^{\prime}$ is a $\binom{n+d-1}{n} \times\left(\binom{n+d}{n}-\alpha\right)$ matrix of linear forms
Since

$$
I_{\rho(Z, d, d)}(\Lambda(Z+d Q, d))=I_{\rho(Z, d, d)-\alpha}\left(\Lambda_{Z+d P, d}^{\prime}\right),
$$

both define the $d$-Weddle scheme.

## Macaulay duality

$$
\begin{aligned}
& R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \\
& R^{*}=\mathbb{C}\left[\partial_{x_{0}}, \ldots, \partial_{x_{n}}\right]
\end{aligned}
$$

## Macaulay duality

$$
\begin{aligned}
& R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \\
& R^{*}=\mathbb{C}\left[\partial_{x_{0}}, \ldots, \partial_{x_{n}}\right] \\
& P=\left[p_{0}: \ldots: p_{n}\right] \in \mathbb{P}^{n} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } L_{P}=p_{0} x_{0}+\cdots+p_{n} x_{n} \in[R]_{1} \\
& \text { - } \partial_{L_{P}}=\sum p_{i} \partial_{x_{i}} \in\left[R^{*}\right]_{1}
\end{aligned}
$$

## Macaulay duality

$$
\begin{array}{ll}
R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right] \\
R^{*}=\mathbb{C}\left[\partial_{x_{0}}, \ldots, \partial_{x_{n}}\right] & \\
P=\left[p_{0}: \ldots: p_{n}\right] \in \mathbb{P}^{n} \longrightarrow & \text { - } L_{P}=p_{0} x_{0}+\cdots+p_{n} x_{n} \in[R]_{1}
\end{array}
$$

$R^{*}$ acts on $R$, hence we have

$$
\left[I(P)^{k}\right]_{t} \cong\left[R^{*} /\left(\partial_{L_{p}}^{t-k+1}\right)\right]_{t}, \quad 0 \leqslant k \leqslant t .
$$

## Macaulay duality

$R=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$
$R^{*}=\mathbb{C}\left[\partial_{x_{0}}, \ldots, \partial_{x_{n}}\right]$
$P=\left[p_{0}: \ldots: p_{n}\right] \in \mathbb{P}^{n} \longrightarrow$

- $L_{P}=p_{0} x_{0}+\cdots+p_{n} x_{n} \in[R]_{1}$
- $\partial_{L_{p}}=\sum p_{i} \partial_{x_{i}} \in\left[R^{*}\right]_{1}$
$R^{*}$ acts on $R$, hence we have

$$
\left[I(P)^{k}\right]_{t} \cong\left[R^{*} /\left(\partial_{L_{P}}^{t-k+1}\right)\right]_{t}, 0 \leqslant k \leqslant t
$$

More generally, for $0 \leqslant k_{i} \leqslant t$ and $0 \leqslant d \leqslant t$, we have

$$
\left[I\left(P_{1}\right)^{k_{1}} \cap \cdots \cap I\left(P_{r}\right)^{k_{r}}\right]_{t} \cong\left[R^{*} /\left(\partial_{L P_{1}}^{t-k_{1}+1}, \ldots, \partial_{L_{P_{r}}}^{t-k_{r}+1}\right)\right]_{t}
$$

and
$\left[I\left(P_{1}\right)^{k_{1}} \cap \cdots \cap I\left(P_{r}\right)^{k_{r}} \cap I(P)^{d}\right]_{t} \cong\left[R^{*} /\left(\partial_{L_{P_{1}}}^{t-k_{1}+1}, \ldots, \partial_{L_{P_{r}}}^{t-k_{r}+1}, \partial_{L_{p}}^{t-d+1}\right)\right]_{t}$.

## Macaulay duality

Now have the exact sequence

$$
\left[\frac{R^{*}}{\left(\partial_{L_{p_{1}}}^{t}, \ldots, \partial_{L_{p_{r}}}^{t}\right)}\right]_{d-1} \xrightarrow{x \partial_{L_{P}}^{t-d+1}}\left[\frac{R^{*}}{\left(\partial_{L_{p_{1}}}^{t}, \ldots, \partial_{L_{p_{r}}}^{t}\right)}\right]_{t} \rightarrow\left[\frac{R^{*}}{\left(\partial_{L_{p_{1}}}^{t}, \ldots, \partial_{L_{p_{r}}}^{t}, \partial_{L_{p}}^{t-d+1}\right)}\right]_{t} \rightarrow 0
$$

where we have

$$
\begin{aligned}
& {[R]_{d-1} \cong\left[R^{*}\right]_{d-1}=\left[R^{*} /\left(\partial_{L_{P_{1}}}^{t}, \ldots, \partial_{L_{p_{r}}}^{t}\right)\right]_{d-1},} \\
& {\left[R^{*} /\left(\partial_{L P_{1}}^{t}, \ldots, \partial_{L_{p_{r}}}^{t}\right)\right]_{t} \cong\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right)\right]_{t}}
\end{aligned}
$$

and

$$
\left[R^{*} /\left(\partial_{L_{P_{1}}}^{t}, \ldots, \partial_{L_{P_{r}}}^{t}, \partial_{L_{p}}^{t-d+1}\right)\right]_{t} \cong\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right) \cap I(P)^{d}\right]_{t}
$$

In particular, as a vector space, $\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right) \cap I(P)^{d}\right]_{t}$ is isomorphic to the cokernel of the map $\times \partial_{L_{P}}^{t-d+1}$.

## Macaulay duality

For the $d$-Weddle locus we want $t=d$

$$
\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d-1} \xrightarrow{\times \partial_{L_{P}}}\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d} \rightarrow\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}, \partial_{L_{P} P}\right)}\right]_{d} \rightarrow 0 .
$$

## Macaulay duality

For the $d$-Weddle locus we want $t=d$

$$
\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d-1} \xrightarrow{\times \partial_{L_{p}}}\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d} \rightarrow\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}, \partial_{L_{P}}\right)}\right]_{d} \rightarrow 0 .
$$

It can be rewritten as

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \oplus\left[R^{*}\right]_{d-1} \xrightarrow{D \oplus\left(\times \partial_{L_{p}}\right)}\left[R^{*}\right]_{d} \rightarrow\left[R^{*} /\left(\partial_{L_{p_{1}}}^{d}, \ldots, \partial_{L_{p_{r}}}^{d}, \partial_{L_{p}}\right)\right]_{d} \rightarrow 0
$$

where

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \xrightarrow{D}\left[R^{*}\right]_{d} \text { and }\left[R^{*}\right]_{d-1} \xrightarrow{\times \partial_{L_{p}}}\left[R^{*}\right]_{d}
$$

$$
v=\left(a_{1}, \ldots, a_{r}\right) \in\left(\left[R^{*}\right]_{0}\right)^{r} \mapsto D(v)=a_{1} \partial_{L_{p_{1}}}^{d}+\cdots+a_{r} \partial_{L_{p_{r}}}^{d}
$$

$$
w \in\left[R^{*}\right]_{d-1} \mapsto\left(\times \partial_{L_{P}}\right)(w)=w \partial_{L_{P}},
$$

hence

$$
\left(D \oplus\left(\times \partial_{L_{P}}\right)\right)(v \oplus w)=D(v)+\left(\times \partial_{L_{P}}\right)(w) .
$$

## Macaulay duality

For the $d$-Weddle locus we want $t=d$

$$
\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d-1} \xrightarrow{\times \partial_{L_{p}}}\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}\right)}\right]_{d} \rightarrow\left[\frac{R^{*}}{\left(\partial_{L_{P_{1}}}^{d}, \ldots, \partial_{L_{P_{r}}}^{d}, \partial_{L_{P}}\right)}\right]_{d} \rightarrow 0 .
$$

It can be rewritten as

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \oplus\left[R^{*}\right]_{d-1} \xrightarrow{D \oplus\left(\times \partial_{L_{P}}\right)}\left[R^{*}\right]_{d} \rightarrow\left[R^{*} /\left(\partial_{L_{p_{1}}}^{d}, \ldots, \partial_{L_{p_{r}}}^{d}, \partial_{L_{P}}\right)\right]_{d} \rightarrow 0
$$

where

$$
\begin{aligned}
& \qquad\left[\left[R^{*}\right]_{0}\right)^{r} \xrightarrow{D}\left[R^{*}\right]_{d} \text { and }\left[R^{*}\right]_{d-1} \xrightarrow{\times \partial_{L_{p}}}\left[R^{*}\right]_{d} \\
& v=\left(a_{1}, \ldots, a_{r}\right) \in\left(\left[R^{*}\right]_{0}\right)^{r} \mapsto D(v)=a_{1} \partial_{L_{p_{1}}}^{d}+\cdots+a_{r} \partial_{L_{P_{r}}}^{d}, \\
& w \in\left[R^{*}\right]_{d-1} \mapsto\left(\times \partial_{L_{P}}\right)(w)=w \partial_{L_{p}}, \\
& \text { hence } \\
& \qquad\left(D \oplus\left(\times \partial_{L_{p}}\right)\right)(v \oplus w)=D(v)+\left(\times \partial_{L_{P}}\right)(w) .
\end{aligned}
$$

So now $\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right) \cap I(P)^{d}\right]_{d}$ is isomorphic to the vector space cokernel of the map $D \oplus\left(\times \partial_{L_{P}}\right)$.

## Macaulay duality

If we regard $\left[R^{*}\right]_{d-1}$ as being the sum $\oplus_{m}\left[R^{*}\right]_{0}$ over all monomials $m$ of degree $d-1$ and $\left[R^{*}\right]_{d}$ as being the sum $\oplus_{M}\left[R^{*}\right]_{0}$ over all monomials $M$ of degree $d$, then

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \oplus\left[R^{*}\right]_{d-1} \xrightarrow{D \oplus\left(\times \partial_{L_{p}}\right)}\left[R^{*}\right]_{d}
$$

can (in terms of the bases of monomials $m$ and $M$ ) be written as a matrix map $T=T(Z, d P)$

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \bigoplus \oplus_{m}\left[R^{*}\right]_{0} \xrightarrow{T=\left[T_{1} \mid T_{2}\right]^{2}} \oplus_{M}\left[R^{*}\right]_{0},
$$

## Macaulay duality

If we regard $\left[R^{*}\right]_{d-1}$ as being the sum $\oplus_{m}\left[R^{*}\right]_{0}$ over all monomials $m$ of degree $d-1$ and $\left[R^{*}\right]_{d}$ as being the sum $\oplus_{M}\left[R^{*}\right]_{0}$ over all monomials $M$ of degree $d$, then

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \oplus\left[R^{*}\right]_{d-1} \xrightarrow{D \oplus\left(\times \partial_{L_{P}}\right)}\left[R^{*}\right]_{d}
$$

can (in terms of the bases of monomials $m$ and $M$ ) be written as a matrix map $T=T(Z, d P)$

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \bigoplus \oplus_{m}\left[R^{*}\right]_{0} \xrightarrow{T=\left[T_{1} \mid T_{2}\right]_{2}} \oplus_{M}\left[R^{*}\right]_{0},
$$

$$
\left(T_{1}\right)_{M, i}=c_{M} M\left(P_{i}\right)
$$

where $c_{M}$ comes from $\partial_{L p_{i}}^{d}=\left(p_{0 i} \partial_{x_{0}}+\cdots+p_{n i} \partial_{x_{n}}\right)^{d}=\sum_{M} c_{M} M\left(P_{i}\right) \partial_{M}$.

## Macaulay duality

If we regard $\left[R^{*}\right]_{d-1}$ as being the sum $\oplus_{m}\left[R^{*}\right]_{0}$ over all monomials $m$ of degree $d-1$ and $\left[R^{*}\right]_{d}$ as being the sum $\oplus_{M}\left[R^{*}\right]_{0}$ over all monomials $M$ of degree $d$, then

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \oplus\left[R^{*}\right]_{d-1} \xrightarrow{D \oplus\left(\times \partial_{L_{P}}\right)}\left[R^{*}\right]_{d}
$$

can (in terms of the bases of monomials $m$ and $M$ ) be written as a matrix map $T=T(Z, d P)$

$$
\left(\left[R^{*}\right]_{0}\right)^{r} \bigoplus \oplus_{m}\left[R^{*}\right]_{0} \xrightarrow{T=\left[T_{1} \mid T_{2}\right]_{2}} \oplus_{M}\left[R^{*}\right]_{0},
$$

$$
\left(T_{1}\right)_{M, i}=c_{M} M\left(P_{i}\right)
$$

where $c_{M}$ comes from $\partial_{L_{p_{i}}}^{d}=\left(p_{0 i} \partial_{x_{0}}+\cdots+p_{n i} \partial_{x_{n}}\right)^{d}=\sum_{M} c_{M} M\left(P_{i}\right) \partial_{M}$.
$\left(T_{2}\right)_{M, m}=0$ unless $m x_{i}=M$, and then $\left(T_{2}\right)_{M, m}=p_{i}$.

## Interpolation matrix and Macaulay duality

Note that we have

$$
\begin{aligned}
& \binom{d+n}{n}-\operatorname{rank} \Lambda(Z+d P, d)=\operatorname{dim} \operatorname{ker} \Lambda(Z+d P, d) \\
& \quad=\operatorname{dim} \operatorname{coker} T(Z+d P)=\binom{d+n}{n}-\operatorname{rank} T(Z+d P)
\end{aligned}
$$

since both the kernel and cokernel are isomorphic to $\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right) \cap I(P)^{d}\right]_{d}$, and hence $\Lambda(Z+d P, d)$ has the same rank as $T(Z+d P)$.

## Interpolation matrix and Macaulay duality

Note that we have

$$
\begin{aligned}
& \binom{d+n}{n}-\operatorname{rank} \Lambda(Z+d P, d)=\operatorname{dim} \operatorname{ker} \Lambda(Z+d P, d) \\
& \quad=\operatorname{dim} \operatorname{coker} T(Z+d P)=\binom{d+n}{n}-\operatorname{rank} T(Z+d P)
\end{aligned}
$$

since both the kernel and cokernel are isomorphic to
$\left[I\left(P_{1}\right) \cap \cdots \cap I\left(P_{r}\right) \cap I(P)^{d}\right]_{d}$, and hence $\Lambda(Z+d P, d)$ has the same rank as $T(Z+d P)$.

## Remark

The $d$-Weddle locus is the closure of the locus of points $P \notin Z$ such that $\operatorname{rank} T(Z+d P)<\rho(Z, d, d)$, where $\rho(Z, d, d)$ is the maximal rank of $T(Z+d P)$ and it is achieved when $P$ is general. This locus is defined by the ideal $I_{\rho(Z, d, d)}(T(Z+d P))$ of $\rho(Z, d, d) \times \rho(Z, d, d)$ minors of $T(Z+d P)$.

## Interpolation matrix and Macaulay duality

$$
I_{q}(T(Z, d Q))=I_{q}(\Lambda(Z+d Q, d)) \text {, for all } q
$$

## Interpolation matrix and Macaulay duality

$$
I_{q}(T(Z, d Q))=I_{q}(\Lambda(Z+d Q, d)), \text { for all } q
$$

- $T(Z, d Q)$ and $N=\Lambda(Z+d Q, d)^{t}$ have the same size; both are $\binom{n+d}{n} \times\left(r+\binom{n+d-1}{n}\right)$,


## Interpolation matrix and Macaulay duality

$$
I_{q}(T(Z, d Q))=I_{q}(\Lambda(Z+d Q, d)) \text {, for all } q
$$

- $T(Z, d Q)$ and $N=\Lambda(Z+d Q, d)^{t}$ have the same size; both are $\binom{n+d}{n} \times\left(r+\binom{n+d-1}{n}\right)$,
- the entries of the first $r$ columns (called $T_{1}$ and $N_{1}$ ) are scalars and the entries of the remaining $\binom{n+d-1}{n}$ columns (called $T_{2}$ and $N_{2}$ ) are scalar multiples of the variables $x_{i}$,


## Interpolation matrix and Macaulay duality

$$
I_{q}(T(Z, d Q))=I_{q}(\Lambda(Z+d Q, d)), \text { for all } q
$$

- $T(Z, d Q)$ and $N=\Lambda(Z+d Q, d)^{t}$ have the same size; both are $\binom{n+d}{n} \times\left(r+\binom{n+d-1}{n}\right)$,
- the entries of the first $r$ columns (called $T_{1}$ and $N_{1}$ ) are scalars and the entries of the remaining $\binom{n+d-1}{n}$ columns (called $T_{2}$ and $N_{2}$ ) are scalar multiples of the variables $x_{i}$,
- $\left(N_{1}\right)_{i j}=M_{i}\left(P_{j}\right)$ and $\left(T_{1}\right)_{i j}=c_{M_{i}} M_{i}\left(P_{j}\right)=d!M_{i}\left(P_{j}\right) / e_{M_{i}}$, so

$$
\left(T_{1}\right)_{i j}=c_{M_{i}}\left(N_{1}\right)_{i j}=d!\left(N_{1}\right)_{i j} / e_{M_{i}}
$$

[for $M=x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}: \quad e_{M}=i_{0}!\cdots i_{n}!$ and $c_{M}=\frac{\left(i_{0}+\cdots+i_{n}\right)!}{i_{0}!\cdots i_{n}!}=\frac{d!}{e_{M}}$.]

## Interpolation matrix and Macaulay duality

$$
I_{q}(T(Z, d Q))=I_{q}(\Lambda(Z+d Q, d)), \text { for all } q
$$

- $T(Z, d Q)$ and $N=\Lambda(Z+d Q, d)^{t}$ have the same size; both are $\binom{n+d}{n} \times\left(r+\binom{n+d-1}{n}\right)$,
- the entries of the first $r$ columns (called $T_{1}$ and $N_{1}$ ) are scalars and the entries of the remaining $\binom{n+d-1}{n}$ columns (called $T_{2}$ and $N_{2}$ ) are scalar multiples of the variables $x_{i}$,
- $\left(N_{1}\right)_{i j}=M_{i}\left(P_{j}\right)$ and $\left(T_{1}\right)_{i j}=c_{M_{i}} M_{i}\left(P_{j}\right)=d!M_{i}\left(P_{j}\right) / e_{M_{i}}$, so

$$
\left(T_{1}\right)_{i j}=c_{M_{i}}\left(N_{1}\right)_{i j}=d!\left(N_{1}\right)_{i j} / e_{M_{i}}
$$

[for $M=x_{0}^{i_{0}} \cdots x_{n}^{i_{n}}: \quad e_{M}=i_{0}!\cdots i_{n}!$ and $c_{M}=\frac{\left(i_{0}+\cdots+i_{n}\right)!}{i_{0}!\cdots i_{n}!}=\frac{d!}{e_{M}}$.]

- $\left(N_{2}\right)_{i j}=\partial_{m_{j}} M_{i}(Q)$ and this is 0 if $m_{j} X M_{i}$ and it is $e_{M_{i}} X_{k_{j}}$ if $m_{j} \mid M_{i}$ where $x_{k_{i j}}=M_{i} / m_{j}$ and $\left(T_{2}\right)_{i j}$ is 0 if $m_{j} X M_{i}$ and it is $x_{k_{j j}}$ if $m_{j} \mid M_{i}$ where $x_{k_{i j}}=M_{i} / m_{j}$, so

$$
\left(N_{2}\right)_{i j}=e_{M i}\left(T_{2}\right)_{i j} .
$$

## Interpolation matrix and Macaulay duality

## Theorem

Given a finite set of points $Z \subset \mathbb{P}^{n}$ and a degree $d$, let $A$ be a minor of $T=T(Z+d P)$, coming from a given choice of $s$ rows and $s$ columns of $T$. Assume that the rows correspond to $\partial_{M_{i j}}$ for monomials $M_{i_{1}}, \ldots, M_{i_{s}}$, and that $j$ of the chosen columns come from $T_{1}$. Let $B$ be the corresponding minor of $N=(\Lambda(Z+d P, d))^{t}$. Then

$$
B=\frac{e_{M_{i_{1}}} \cdots e_{M_{i_{5}}}}{(d!)^{j}} A
$$

and thus $I_{s}(T(Z+d P))=I_{s}(\wedge(Z+d P, d))$.

## Example

- $n=3, d=3$


## Example

- $n=3, d=3$
- $Z$ consists of the points:

$$
\begin{aligned}
& P_{1}=[1: 0: 0: 0], P_{2}=[0: 1: 0: 0], P_{3}=[0: 0: 1: 0], \\
& P_{4}=[0: 0: 0: 1], P_{5}=[1: 1: 1: 1], P_{6}=[2: 3: 5: 7],
\end{aligned}
$$

## Example

- $n=3, d=3$
- $Z$ consists of the points:

$$
\begin{aligned}
& P_{1}=[1: 0: 0: 0], P_{2}=[0: 1: 0: 0], P_{3}=[0: 0: 1: 0] \\
& P_{4}=[0: 0: 0: 1], P_{5}=[1: 1: 1: 1], P_{6}=[2: 3: 5: 7]
\end{aligned}
$$

- basis for $[R]_{3}$ :

$$
M_{1}=x_{0}^{3}, M_{2}=x_{0}^{2} x_{1}, M_{3}=x_{0}^{2} x_{2}, M_{4}=x_{0}^{2} x_{3}, M_{5}=x_{0} x_{1}^{2}
$$

$$
M_{6}=x_{0} x_{1} x_{2}, M_{7}=x_{0} x_{1} x_{3}, M_{8}=x_{0} x_{2}^{2}, M_{9}=x_{0} x_{2} x_{3}, M_{10}=x_{0} x_{3}^{2}
$$

$$
M_{11}=x_{1}^{3}, M_{12}=x_{1}^{2} x_{2}, M_{13}=x_{1}^{2} x_{3}, M_{14}=x_{1} x_{2}^{2}, M_{15}=x_{1} x_{2} x_{3}
$$

$$
M_{16}=x_{1} x_{3}^{2}, M_{17}=x_{2}^{3}, M_{18}=x_{2}^{2} x_{3}, M_{19}=x_{2} x_{3}^{2}, M_{20}=x_{3}^{3}
$$

## Example

- $n=3, d=3$
- $Z$ consists of the points:

$$
\begin{aligned}
& P_{1}=[1: 0: 0: 0], P_{2}=[0: 1: 0: 0], P_{3}=[0: 0: 1: 0] \\
& P_{4}=[0: 0: 0: 1], P_{5}=[1: 1: 1: 1], P_{6}=[2: 3: 5: 7]
\end{aligned}
$$

- basis for $[R]_{3}$ :

$$
\begin{aligned}
& M_{1}=x_{0}^{3}, M_{2}=x_{0}^{2} x_{1}, M_{3}=x_{0}^{2} x_{2}, M_{4}=x_{0}^{2} x_{3}, M_{5}=x_{0} x_{1}^{2} \\
& M_{6}=x_{0} x_{1} x_{2}, M_{7}=x_{0} x_{1} x_{3}, M_{8}=x_{0} x_{2}^{2}, M_{9}=x_{0} x_{2} x_{3}, M_{10}=x_{0} x_{3}^{2} \\
& M_{11}=x_{1}^{3}, M_{12}=x_{1}^{2} x_{2}, M_{13}=x_{1}^{2} x_{3}, M_{14}=x_{1} x_{2}^{2}, M_{15}=x_{1} x_{2} x_{3} \\
& M_{16}=x_{1} x_{3}^{2}, M_{17}=x_{2}^{3}, M_{18}=x_{2}^{2} x_{3}, M_{19}=x_{2} x_{3}^{2}, M_{20}=x_{3}^{3}
\end{aligned}
$$

- basis for $[R]_{2}$ :

$$
\begin{aligned}
& m_{1}=x_{0}^{2}, m_{2}=x_{0} x_{1}, m_{3}=x_{0} x_{2}, m_{4}=x_{0} x_{3}, m_{5}=x_{1}^{2}, m_{6}=x_{1} x_{2} \\
& m_{7}=x_{1} x_{3}, m_{8}=x_{2}^{2}, m_{9}=x_{2} x_{3}, m_{10}=x_{3}^{2}
\end{aligned}
$$

## Example - transpose of interpolation matrix

$$
\begin{aligned}
& \boldsymbol{N}=\left(\right) \\
& N_{2,6}=M_{2}\left(P_{6}\right)=x_{0}^{2} x_{1}([2: 3: 5: 7])=2^{2} 3=12 \\
& N_{11,11}=\partial_{m_{5}} M_{11}=\partial_{x_{1}^{2}}\left(x_{1}^{3}\right)=6 x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T_{2,6}=c_{M_{2}} M_{2}\left(P_{6}\right)=\frac{3!}{2!1!}\left(x_{0}^{2} x_{1}\right)([2: 3: 5: 7])=36 \text {, } \\
& T_{11,11}=M_{11} / m_{5}=x_{1}^{3} /\left(x_{1}^{2}\right)=x_{1}
\end{aligned}
$$

## Example

3 -Weddle ideal is not saturated, and its saturation is not radical.

## Example

3-Weddle ideal is not saturated, and its saturation is not radical. So the 3 -Weddle scheme is not reduced and thus is not equal to the 3-Weddle locus.

## Example

3-Weddle ideal is not saturated, and its saturation is not radical. So the 3 -Weddle scheme is not reduced and thus is not equal to the 3-Weddle locus.
In fact, the scheme defined by the 3-Weddle ideal consists of the union of the 15 lines together with embedded components at each of the six points of $Z$.

## Example

3-Weddle ideal is not saturated, and its saturation is not radical. So the 3-Weddle scheme is not reduced and thus is not equal to the 3-Weddle locus.
In fact, the scheme defined by the 3-Weddle ideal consists of the union of the 15 lines together with embedded components at each of the six points of $Z$.
More precisely, a primary decomposition for the ideal of the 3-Weddle scheme is given by the intersection of the ideals of the 15 lines with the cubes of the ideals of the six points.

## Reduced Weddle surface

## Theorem

Let $L_{i}$ be three noncoplanar lines concurrent at a point $O$. Let $Z=\left\{P_{1}, P_{2}, P_{3}, Q_{1}, Q_{2}, Q_{3}\right\}$ be a set of six points in $\mathbb{P}^{3}$ away from $O$, distributed in pairs $P_{i}, Q_{i}$ on the lines $L_{i}$. Then the Weddle surface $\mathcal{W}(Z)$ consists of four planes: the three planes generated by pairs of the lines $L_{i}$ and the plane spanned by $H_{1}, H_{2}, H_{3}$, where $H_{i}$ is the point on $L_{i}$ such that $\left(P_{i}, Q_{i}, O, H_{i}\right)$ are harmonic, for $i=1,2,3$.

## Reduced Weddle surface

We may assume that

$$
\begin{gathered}
O=[0: 0: 0: 1], P_{1}=[1: 0: 0: 0], P_{2}=[0: 1: 0: 0], P_{3}=[0: 0: 1: 0] \\
Q_{1}=[a: 0: 0: 1], Q_{2}=[0: b: 0: 1], Q_{3}=[0: 0: c: 1]
\end{gathered}
$$

for some nonzero $a, b, c$. Then the interpolation matrix defining the Weddle surface has the form

$$
\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a^{2} & 0 & 0 & 1 & 0 & 0 & a & 0 & 0 & 0 \\
0 & b^{2} & 0 & 1 & 0 & 0 & 0 & 0 & b & 0 \\
0 & 0 & c^{2} & 1 & 0 & 0 & 0 & 0 & 0 & c \\
2 x & 0 & 0 & 0 & y & z & w & 0 & 0 & 0 \\
0 & 2 y & 0 & 0 & x & 0 & 0 & z & w & 0 \\
0 & 0 & 2 z & 0 & 0 & x & 0 & y & 0 & w \\
0 & 0 & 0 & 2 w & 0 & 0 & x & 0 & y & z
\end{array}\right) .
$$

Its determinant is $2 x y z(b c x+a c y+a b z-2 a b c w)$,

$$
H_{1}=[2 a: 0: 0: 1], H_{2}=[0: 2 b: 0: 1], H_{3}=[0: 0: 2 c: 1]
$$

such that $\left(P_{i}, Q_{i}, O, H_{i}\right)$ are harmonic.

## (2, 3)-grid

$$
\begin{aligned}
Z= & \{[1: 0: 0: 0],[0: 1: 0: 0],[1: 1: 0: 0], \\
& {[0: 0: 1: 0],[0: 0: 0: 1],[0: 0: 1: 1]\} . }
\end{aligned}
$$

The Macaulay duality matrix $T^{\prime}(Z, 2 P)$ is

$$
\left[\begin{array}{llll}
z & 0 & x & 0 \\
w & 0 & 0 & x \\
0 & z & y & 0 \\
0 & w & 0 & y
\end{array}\right]
$$

$$
\operatorname{det}\left(T^{\prime}(Z, 2 P)=0\right.
$$

The ideal of $3 \times 3$ minors of $T^{\prime}(Z, 2 P)$ is:

$$
\begin{aligned}
& \left(x z w, x w^{2},-y z w,-y w^{2},-x z^{2},-x z w, y z^{2}, y z w,-x y z,-x y w,\right. \\
& \left.y^{2} z, y^{2} w, x^{2} z, x^{2} w,-x y z,-x y w\right) \\
& \operatorname{sat}(I)=(y w, x w, y z, x z)=(x, y) \cap(z, w),
\end{aligned}
$$

so the 2-Weddle scheme consists of the two lines, $x=y=0$ and $w=z=0$, which are grid lines for the $(2,3)$-grid $Z$. Hence the 2 -Weddle scheme is the same as the 2 -Weddle locus.

